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Abstract

I present the age-old mathematics of the sundial from a new per-
spective. Standard approaches consider the problem in the Earth
frame and focus on spherical geometry. In this work, I apply a more
physical approach, based on geometric algebra, to the generalized sun-
dial problem of calculating the position of the tip of the shadow of a
gnomon on a flat dial surface, both of which can have arbitrary orien-
tation. This results in exact parametric expressions for the analemma
and equation of time, which reduce to standard results for the special
cases of common dial types.

1 Introduction

Sundials are among the most ancient of mankind’s inventions and the math-
ematics that describes them has been well understood for many centuries.
A sundial consists of a shadow-casting object, called a gnomon1, and a dial
face displaying lines parallel to the shadow at different times of day. The
problem considered here is to calculate the location of those lines. The com-
mon approach to solving this problem works relative to a frame fixed with
respect to the Earth and the sun’s apparent motion is parametrized via its
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1Traditionally, the word gnomon has been used to describe a vertical shadow-casting

object but here we use it for one of arbitrary orientation.
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hour angle which is zero at noon and increases by approximately 1◦ every
four minutes.

This has the advantage of decoupling the issue of dial geometry from the
orbital dynamics of the Earth and sun; it removes the physics of orbits from
the problem and reduces it to one of mathematics only. The physics is a
part of the problem however, embodied in the “equation of time” and a full
treatment must include it. Normally, it is presented somewhat separately
(if at all), set apart from the geometry as viewed in the Earth’s frame of
reference.

In this paper, I apply a different approach to the calculation; one where
both the orbital dynamics and the geometry of the dial are included in a
single framework, based on the rest frame of the fixed stars. This yields
expressions for both the equation of time and the coordinates of the tip of
the shadow as it moves across the face of the sundial. I consider a geometry
that is more general than that commonly considered in the literature; one
where the orientation of both the gnomon and the dial face can be arbitrary.

This more general approach is facilitated by neat handling of rotations
and other geometric operations afforded by geometric algebra. In fact, I was
not aware that it was more general when first applying it; it was simply a nat-
ural way to tackle the problem, given the tools of geometric algebra. An intro-
duction to these techniques is beyond the scope of this work. There are many
excellent tutorials available2, such as [Gull et al 1993], [Lasenby et al 2000]
and [Doran and Lasenby 2003]. This problem forms an instructive example
of the application of rotors in particular, and of some simple techniques in
geometric algebra in general.

We start in Section 2 by defining some orthonormal frames, planes and
other vectors which specify the geometry of the dial, its location on the Earth
and the position of the Earth relative to the sun. We then write down the
solution to the sundial problem in general terms in Section 3. In Section 4 we
specialize to the case of a gnomon in the meridian plane and derive explicit
forms of the general results of Section 3, including an exact expression for
the equation of time which is shown in Section 5. In Section 6 we graph some
example paths followed by the shadow tip as it moves across the dial face
and Section 7 contains a comparison of the results found in this work with
standard formulae in the literature. Finally, we conclude in Section 8 and A
contains details of the novel approach taken to the Kepler problem, based on

2I would recommend starting at http://geometry.mrao.cam.ac.uk.
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spinors and of which full details can be found in [Doran and Lasenby 2003].

2 Definitions

2.1 Useful frames

We begin with an orthonormal frame fixed relative to the the“fixed stars”
{ei : i = 1, 2, 3} oriented as in Figure 1 such that e1 is directed from the sun’s
centre of mass to that of the Earth at the summer solstice and −e2 does the
same at the vernal equinox. The origin of this frame’s coordinate system is

winter solstice

s

vernal equinox

autumnal equinox

summer solstice

Figure 1: The Earth’s orbit around the sun and orientation of its axis of
rotation. The orbit lies in the e1∧e2 plane and the Earth’s axis is f3. The
equinoxes and solstices lie on the points of intersection of the ellipse and the
{ei} frame. Note that the axes of the ellipse are not aligned with e1 and e2
but differ by an angle ρ which for the Earth is about 12.25◦ and that the
eccentricity of the Earth’s orbit is greatly exaggerated.
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located at the focus of the Earth-sun orbit (their common centre of mass) and
we consider these two bodies in isolation, ignoring the gravitational effect of
other masses in the solar system. We can then define a frame fixed in the
Earth by modelling its orientation as arising from two rotations; one in the
e1∧e3 plane by α, the tilt of the Earth’s axis and another in the Earth’s
equator by ψ, the rate at which the Earth spins relative to the fixed stars,

Rα = exp(−e1e3 12α) (1)

Rψ = exp(−Rαe1R̃αe2
1
2
ψ).

Applying the rotor RψRα to the fixed {ei} frame gives

f1 = cosψ(cosα e1 + sinα e3) + sinψ e2 (2)

f2 = − sinψ(cosα e1 + sinα e3) + cosψ e2

f3 = − sinα e1 + cosα e3.

f3 is parallel to the Earth’s axis of rotation and f1∧f2 is the equatorial plane.
Although f1 and f2 vary with time via ψ, the equatorial plane does not; the
ψ dependence cancels to give

f1∧f2 = cosα e1∧e2 − sinα e2∧e3. (3)

In Figure 1 this frame is shown at the summer solstice when f2 is parallel
to e2. In this work we assume α is constant, but this is not quite the case;
it varies by about 3◦ with a period of ∼ 41000 years. We could include this
effect in the current treatment by simply allowing α to vary with time. In
addition, the earth’s axis precesses with a period of ∼ 23000 years. Again,
this effect is ignored in the current work but could be included by using
another rotor in (1).

To obtain the coordinate frame of an observer on the Earth’s surface, we
require a further rotation to account for latitude. Let us define θ as in Figure 2
such that it matches the angle commonly denoted θ in the spherical polar
coordinate system. The corresponding latitude θL = π/2− θ. A rotation of
θ in the f3∧f1 plane

Rθ = exp(−f3∧f1 12θ) (4)

applied to the {fi} frame then gives us the orthonormal frame of an observer
on the Earth’s surface {ni}

n1 = (sinα sin θ + cosα cosψ cos θ ) e1 + sinψ cos θ e2 (5)
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f1

f2

θ
n1

n2

n3 f3

Figure 2: The orthonormal frame {ni : i = 1, 2, 3} on the Earth’s surface,
obtained by rotating the Earth frame {fi} by θ in the plane f3∧f1. n3 points
vertically upward, toward the zenith. n1 is directed South and n2 East.

+ (− cosα sin θ + sinα cos θ cosψ) e3

n2 = − sinψ(cosα e1 + sinα e3) + cosψ e2

n3 = (cosψ cosα sin θ − sinα cos θ) e1 + sin θ sinψ e2

+(cosψ sinα sin θ + cosα cos θ) e3.

n3 is directed vertically upward from the Earth’s surface n1 points South
and n2 points East. With the orientation of the Earth encoded in the above
frames, we now turn to its location relative to the sun.

2.2 Dial geometry

In Figure 1 we define the angle between e1 and the unit vector s (directed
from the origin of the {ei} frame to the Earth’s centre of mass) to be σ. Then
s is given by

s = Rσe1R̃σ = cosσ e1 + sinσe2 (6)

where
Rσ = exp(−e1∧e2 12σ). (7)
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The plane of the sundial has an inclination i and declination d encoded by
the two rotors

Ri = exp(−n1∧n3
1
2
i) (8)

Rd = exp(−n1∧n2
1
2
d)

so that the dial face G is given by

G = RdRi n1∧n2 R̃iR̃d (9)

= cos i n1∧n2 − sin i(cos d n2∧n3 − sin d n1∧n3)

It will be useful to perform projections onto a frame aligned with the dial
face. We can define such a frame by applying the rotors in (8) to the Earth
surface frame in (5) to give

m1 = cos i(cos d n1 + sin d n2) + sin i n3 (10)

m2 = − sin d n1 + cos d n2

m3 = − sin i(cos d n1 + sin d n2) + cos i n3

m1 points in the direction of steepest ascent of the dial face, m2 is horizontal
(parallel to n1∧n2), m3 is normal to the face and m1∧m2 is just G. This
can be seen in Figure 3 which shows the dial face as a dashed square outline.
We shall refer to the shadow-casting object as a gnomon although strictly a
gnomon is vertical (parallel to n3). Defining the rotors

Rι = exp(−n1∧n3
1
2
ι) (11)

Rδ = exp(−n1∧n2
1
2
δ)

we have a gnomon which can point in an arbitrary direction and whose
orientation is displayed in Figure 4.

g = − sin ι(cos δ n1 + sin δ n2) + cos ι n3. (12)

3 The calculation

We can now solve the general sundial problem; given a gnomon with arbitrary
orientation, casting a shadow onto a plane, the dial face, also of arbitrary
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Figure 3: The dial face.
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Figure 4: The gnomon.

orientation, where does the tip of the shadow lie in relation to the intersection
of the gnomon and the dial face?

Lines on a sundial are typically constructed relative to the shadow at noon
(the “noon line”). Noon occurs when the sun passes through the meridian
plane M = n1∧n3. Equivalently, we have the condition that s lies in M

s∧M = 0 (13)

Solving this equation gives the condition

tanψ =
tanσ

cosα
. (14)

At an arbitrary time, the shadow is parallel to the intersection of the planes
G and S, where S = s∧g. To find this intersection we first form G×S;
the plane perpendicular to both G and S, where× denotes the commutator
product. The vector we seek is dual to this plane so the shadow is parallel
to

u = I G×S = ⟨IGS⟩1. (15)

The magnitude of u is sinΨ where Ψ is the angle between the planes S and
G. Dividing by this magnitude gives

ŵ =
1

sinΨ
u, (16)
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a unit vector parallel to the shadow. Substituting (14) into (16) gives us
the noon line ŵnoon. We can now compute the angle ζ between the shadow
vector and the noon line

cos ζ = ŵ·ŵnoon. (17)

We have the azimuthal coordinate of the tip of the shadow in the dial face
(relative to the noon line). To obtain the radial coordinate we can construct
the vector

w′(λ) = g + λs, (18)

which will be equal to the shadow vector w when it lies in the plane of the
dial face G. (Figure 5). We therefore impose the condition

w′(λ)∧G = 0. (19)

Solving this for λ, then substituting into (18) gives w, the shadow itself.
Its magnitude |w| is the radial coordinate of the shadow tip. Cartesian
coordinates are most naturally expressed relative to the frame of (10)

xi = w·mi i = 1, 2, 3. (20)

4 Explicit formulae

Let us now obtain explicit expressions for the formulae in Section 3 for the
special case of a gnomon that lies in the meridian plane. Setting δ = 0 in
(12) gives

g = cos ι n3 − sin ι n1. (21)

This leaves enough generality to cover the common types of sundial. In
particular, we have a style (gnomon parallel to the Earth’s axis) when ι = θ
and a vertical gnomon when ι = 0. It is useful to define a generalized solar
hour angle as the angle between S and M given by

cosµ =
−S ·M√
−S2

√
−M2

=
−S ·M
sin(Ξ)

(22)

where M2 = −1 and Ξ, the angle between the direction of sun rays s and
the gnomon g, is given by

cos Ξ = s · g = sin(ι− θ)(cosσ cosψ cosα− sinσ sinψ) (23)

− cos(ι− θ) cosσ sinα
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m2

m1

m3

s

g
λ

L

Ξ

β w

Figure 5: The triangle formed in the plane S by the gnomon g, the scaled
sun-ray vector λs and the shadow w whose length is L. The angle between
the g and s is Ξ and ŵ (w/L) is obtained by rotating g by the angle β in S.
Also shown (as a dashed line) is the normal projection of g onto the dial face
(G = m1∧m2). This line is not coincident with the shadow, which shows that
the angle between the planes S and G is not 90◦; it depends on the geometry
and we give it the symbol Ψ (not shown).
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This gives the magnitude of the bivector S via S2 = (s ·g)2−s2g2 = − sin2 Ξ.
Evaluating (22) gives

cosµ =
(sinψ sinσ + cosα cosψ cosσ) cos(ι− θ)− sinα cosσ sin(ι− θ)

sin Ξ
(24)

and so

tanµ =
sinψ cosα− cosψ tanσ

(sinψ tanσ + cosψ cosα) cos(ι− θ)− sinα sin(ι− θ)
(25)

In terms of this angle, we can express S in the following simple form

S = − sin Ξ(sinµ(sin ι n1∧n2 + cos ι n2∧n3)− cosµn1∧n3) (26)

which, when substituted into (15) gives

u

sin Ξ
= (sin ι sin d sin i sinµ+ cos i cosµ) n1 (27)

− sinµ(sin ι sin i cos d+ cos ι cos i) n2

− sin i(cos ι sin d sinµ− cos d cosµ) n3.

Taking the inner product of this vector with itself yields Ψ where

cosΨ = sinµ(cos i sin ι− sin i sin ι cos d)− cosµ sin i sin d (28)

which in turn allows us to construct ŵ via (16). To evaluate ŵ at noon we
impose the condition in (14) which amounts to setting µ = 0. This yields

ŵnoon =
1

υ(i, d)
(cos i n1 + sin i cos d n2) (29)

where
υ(i, d) = (cos2 i+ sin2 i cos2 d)1/2. (30)

In the above, all of the dependence on σ, ψ and α, the physical parameters
of the Earth’s orbit is contained within µ and we have have formulae which
relate µ to the geometry we have chosen for the sundial (i, d and ι). Our
expression for the shadow angle (17) then yields

tan ζ =
tanµ(sin ι sin i cos d+ cos ι cos i)

υ2(i, d)− tanµ sin d sin i(sin ι cos i− cos ι sin i cos d)
. (31)
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This expression gives the angular coordinate of the tip of the shadow on the
face of the dial G. To find the length of the shadow, we solve (18) for λ
which gives

λ =
cos ι cos i+ sin ι sin i cos d

D
(32)

where

D = (sin i cos d cos θ − sin θ cos i) cosµs − sinµs sin d sin i) sin Ξ (33)

+(sin i sin θ cos d+ cos i cos θ) sinα cosσ

and µs is the hour angle from 25 subject to the condition ι = θ such that g
is a style. We can now substitute for λ in (18) to get the shadow vector w
which has magnitude

L =
sinΞ sinΨ

D
. (34)

Projecting w onto the frame of (10) (as in (20)) gives the Cartesian coordi-
nates of the tip of the shadow

x =
sin(Ξ)

D
(cosµ cos d− sinµ cos ι sin d) (35)

y =
− sin(Ξ)

D
(sinµ[sin ι sin i+ cos ι cos i cos d] + cosµ cos i sin d)

z = 0.

Finally, let us perform a useful consistency check. We have two ways of
finding the angle β between g and w. One is to use the triangle defined by
g, w and λ s and the other is to form the inner product g ·ŵ. The former
entails using the sine rule to evaluate

sin β =
λ sin Ξ

L
(36)

and the latter gives
cos β = g ·ŵ. (37)

It can be verified that squaring and adding Equations 36 and 37 does indeed
give 1, while the explicit form of β is

tan β =
sin ι sin i cos d+ cos ι cos i

cosµ(cos ι sin i cos d− sin ι cos i)− sinµ sin d sin i
. (38)
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5 The equation of time

We have in (35) (or equivalently Equations (31) and (34)) a description of
the path of the tip of the shadow as a function of fixed parameters which
encode the dial’s geometry and the angle µ which varies with time. µ is given
by (25) as a function of fixed parameters encoding the Earth’s orientation,
dial’s latitude and gnomon’s orientation, and the two angles σ and ψ which
change with time. It is to this time-dependence we now turn. If we restrict
to the special case where the gnomon is a style (ι = θ), µ becomes the hour
angle of the sun

tanµ =
tanσ − tanψ cosα

tanσ tanψ + cosα
(39)

which, if we reduce the tilt of the Earth’s axis α to zero, gives µ = σ − ψ
as we would expect. σ measures the progress of the Earth on its elliptical
orbit around the sun which we can express in terms of the semi-major axis

a, semi-minor axis b, eccentricity e =
√
1− b2/a2 and the parameter τ as

tanϕ(τ) =
b

a

sinωτ

e+ cosωτ
(40)

t(τ) = a
(
τ +

e

ω
sinωτ

)
.

where ω = aωy and ωy is the mean angular frequency of the Earth’s orbit
(2π divided by the time between two successive vernal equinoxes). For a
derivation of the above formulae, see Appendix A. ϕ is the angle between the
Earth-sun vector s at perihelion and s at an arbitrary time t. We assume that
e is constant, when in fact it varies slightly with a period of ∼ 105 years – by
allowing e to become a function of time we could model this behaviour. In
addition, we are free to choose orbital parameters corresponding to any planet
in the solar system, but here we focus on the Earth. The ellipse of the Earth’s
orbit is rotated by an angle ρ relative to the {ei} frame which is aligned with
the equinoxes and solstices (at present ρ ∼ 12.25◦) and perihelion is closest
to −e1. The angle σ is therefore related to ϕ by

σ = ρ+ π + ϕ. (41)

The angle ψ measures the rate at which the Earth spins on its axis, relative
to the fixed stars. When ψ increases by 2π, one siderial day (Tsd) will have
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elapsed on Earth. We therefore have

ψ = ωsd t, ωsd =
2π

Tsd
. (42)

Let N be the number of mean days in a year (Ty). Note that N is not an
integer and is approximately equal to 365.2422. The number of siderial days
in Ty is N + 1, so we can express ψ as

ψ =
N + 1

N
ωd t (43)

where

ωd =
2π

Td
and Td =

Ty
N
. (44)

Given the above, (39) gives the hour angle of the sun as a function of time.
This hour angle is zero at solar noon, but this does not correspond to 12
o’clock as read on mechanical clocks. The latter time is called mean time and
increases linearly with absolute, Newtonian time. Solar time is sometimes
called true time, but I find this misleading as mean time is much closer to
what we mean by “time”. Solar time varies according to (39), as the angle
between s and the Earth’s axis (f3) changes and as the angular speed of the
Earth changes throughout its orbit.

The difference between solar time and mean time is called the equation of
time which we shall denote by ∆µ. To calculate it, we first need an expression
for the hour angle of the mean sun. This is the sun as observed on an Earth
whose axis is not tilted (α = 0) and whose orbit is circular with period Ty.
In this scenario, we have

µm = ψ + π − σ. (45)

This mean Earth still spins at the same rate ωsd so the expression for ψ is
unaltered from (42), but now σ also goes linearly with time; σ = ωyt. If we
start our clock at perihelion (tp), then ψ and σ are given by

ψ = ρ+ ωsd(t− tp) (46)

σ = ρ+ π + ωy(t− tp)

which, upon substituting into (45) gives

µm = ωd(t− tp). (47)

13



Mean noon occurs when this angle is equal to 2πn where n = 0, 1, 2... This
occurs at time tmn given by

tmn = tp + nTd. (48)

Figure 6 shows ∆µ = µ − µm as given by Equations 39 and 45. It also
shows the two separate effects contributing to ∆µ; non-zero α and the non-
constant angular speed of a Keplerian orbit. The result for ∆µ in this section
is exact and requires a numerical root-finding calculation to find τ(t) from
(40). However, the fact that ∆µ is composed of the sum of two functions
with a high degree of periodicity means that a Fourier series with just two
terms provides a very good approximation. Such an expansion is derived in
[Müller 1995]3.

6 Example analemmas

The results of Section 5 have provided us with a means of plotting the shadow
tip’s locus at any point in time. In this section we will plot this path for
some different dial geometries and locations. Throughout, we will consider
a dial on Earth for which α = 23.5◦. In Figure 7 we have a horizontal
dial where the inclination and declination are both zero (i = d = 0) and
where the gnomon is a style with ι = θ. Distances are shown in units of
the length of the style whose base is shown by a small circle at the origin of
the coordinate system and an embedded compass indicates orientation. The
compass diagram results from a vertical projection of a horizontal compass
onto the dial face. The path of the shadow tip for a given time of day
as a function of time of year is visible as a figure-of-eight pattern (called
an analemma), though in this figure, one side of the double loop is barely
visible. A small square marks the 12 o’clock loop. Also shown is the path
of the shadow tip as a function of time of day on four key days of the year;
the solstices and equinoxes. Points falling in the four seasons are shown in
different line styles so we can see, for example, that at the winter solstice the
shadow tip passes furthest from the base of the gnomon while at the summer
solstice it reaches its closest point. We can see that at both the vernal and
autumnal equinoxes the shadow tip passes over the same straight line on the

3Also available online at
http://info.ifpan.edu.pl/firststep/aw-works/fsII/mul/mueller.html
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Figure 6: The equation of time – the difference between time as reckoned by
the observed hour angle of the sun and the hour angle of an imaginary mean
sun. The latter time is “true”, absolute Newtonian time, the time told by
mechanical clocks.

dial face. Near noon, the whole loop for each hour is visible in the figure but
for late and early times there is only room to show the summer part of the
loop. Seasons are here defined to be 3 month periods of time centered on the
solstices and equinoxes and so differ from the seasons we use on the common
calendar.

We are of course free to choose an arbitrary dial geometry. Figure 8 shows
the same plot but for a latitude of 10◦ S (θ = 100◦) and dial parameters
i = 15◦, d = 20◦ and ι = 20◦.The proximity of the dial to the equator gives
a only small variation between shadow length between winter and summer,
as we would expect. In plotting these shadow paths it is useful to know the
times of sunrise and sun set. These events occur when the shadow length
L becomes infinite. It is sufficient to examine the zeros of D – taking the
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Figure 7: The path of the tip of a style’s shadow on a horizontal dial face,
located at the latitude of Cambridge, England at different times of day and
times of year. The characteristic double loop of the analemma is visible at
each hour (12 o’clock is marked by a small square). Different times of year
are shown with different line styles. The style is of unit length and its base
is shown as a small circle. Also shown is the path of the shadow tip on four
important days of the year; the equinoxes and solstices. The two paths at
the equinoxes coincide while those at the solstices mark the upper and lower
limits of the shadow.

horizontal dial as an example, D becomes

Dh = cos θ sinα cosσ − sin θ(cosα cosψ cosσ − sinψ sinσ). (49)

Setting this equal to zero yields a quadratic equation for sinψ whose solutions
give the time of day of sunrise and sunset. The discriminant of this equation
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Figure 8: Paths of the shadow tip for a dial near the equator in the Southern
hemisphere (latitude 10◦ South) with an unusual geometry; inclination i =
15◦, declination d = 20◦ and gnomon angle ι = 20◦.

is greater than zero when

tan θ >
sinα

(tan2 σ + cos2 α)1/2
(= tanD) (50)

which gives a condition on the latitude for a sunset and sunrise to exist. At
the summer solstice when σ = 0 we can see that (50) reduces to θ > α so
that the sun rises and sets only if we are outside the arctic circle. At the
equinoxes when σ = π/2 and 3π/2 we have θ = 0 and π, corresponding a
sunrise and sunset occurring over the entire planet. At the poles themselves,
this occurs for a unique value of σ, giving only one sunrise and one sunset
per year. The right hand side of (50) is just the (tangent of the) declination
of the sun D; the angle between the vector s and the equatorial plane f1∧f2.
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To calculate the hours at which the analemma is first and last visible on
a dial face of arbitrary orientation, we must perform a similar calculation to
the above but now for the general form of D given by (33). In this case, it is
simplest to proceed numerically and this approach was taken for the figures
in this section. Figure 9 shows a dial in the arctic for which, during the
height of summer, the sun does not set. During the spring and autumn, we
do have a sunset and sunrise.
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Figure 9: Paths of the shadow tip for a dial in the arctic (latitude 80◦ North)
and with a declination of d = 30◦. The gnomon here is a true gnomon, being
vertical, with ι = 0◦.
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7 Comparison with existing results

The problem of calculating the angle made by the shadow of a gnomon is
among the oldest in geometry so it is no surprise that there is an established
literature on the subject. My main reference here will be [Rohr 1996] which
records results for standard types of sundial, but [Waugh 1973] also has some
useful information. While Rohr considers an arbitrarily oriented dial face,
he uses a style throughout, expect for the case of an analemmatic sundial,
where the dial face is horizontal and the gnomon is vertical.

The substyle b is the projection of the style onto the dial face in the
direction of its normal. We can obtain a vector parallel to b by rotating G·g
by π/2 in G to get

b = (sin ι cos i cos d− cos ι sin d) m1 − sin ι sin dm2. (51)

The length of this vector is the cosine of the angle A between g and b where

sinA = sin ι sin i cos d+ cos ι cos i. (52)

The angle between the substyle and the noon line B is given by

cosB =
1

|b|
b·wnoon (53)

which yields

tanB =
sin i sin d (tan i tan ι cos d+ 1)

tan i cos d− tan ι
(54)

For the case considered by Rohr, ι = π/2− θL and we have

tanB =
sin i sin d (tan i cos d+ tan θL)

tan i cos d tan θL − 1
(55)

which agrees with Rohr.

7.1 Common types of sundial

We now focus attention of a selection of special cases of the formulae given
in Section 3 which corresponds to common types of sundial and show that
the results agree with standard formulae.
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Equatorial.

We first set ι to be θ, making the gnomon parallel to the Earth’s axis of
rotation and thus a style. Setting i = θ and d to zero gives a dial face
parallel to the equatorial plane. The shadow angle (31) reduces to µ, the
hour angle (39) and the shadow’s length becomes

L =

√
tan2 σ + cos2 α

sinα
= (tanD)−1 (56)

where D is the sun’s declination (50).

Horizontal.

If we instead set both i and d to zero we have a horizontal dial face (tangent
to the Earth’s surface). The shadow angle (31) becomes

tan ζ = cos θ tanµ (57)

and the length of the shadow cast by a gnomon of unit length is given by

L =
cosµ

Dh tanD

√
1 + tan2 µ cos2 θ (58)

where Dh is given by (49).

Vertical.

If we instead set i to be π/2 we have a vertical dial where

tan ζ = sin θ tanµ (59)

Inclining.

The vertical dial faces South. If we rotate the dial face about the East-West
line, we have an inclining dial. In our formulae, this amounts to allowing i
to be arbitrary but fixing d to be zero:

tan ζ = cos(i− θ) tanµ (60)
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Declining.

If we take a vertical dial and remove the restriction that it faces South, we
have a declining dial. This corresponds to i = π/2 and arbitrary d

tan ζ =
sin θ sinµ

cos d cosµ+ sin d sinµ cos θ
(61)

Both declining and inclining.

Leaving i and d arbitrary, but setting ι = θ such that the gnomon is a style,
amounts to a simple substitution of θ for ι in Equations 31 and 34.

8 Conclusion

I have presented a different approach to solving the generalized sundial prob-
lem where both gnomon and dial face can have arbitrary orientation. This
is a more general geometry than that commonly considered in the literature.
The calculation placed equal emphasis on both the geometry of the dial and
the physics behind the equation of time. For the special case of a gnomon ly-
ing in the meridian plane we have explicit formulae for the coordinates of the
shadow tip as a function of time. Visualization confirms that the results are
consistent with intuition and display familiar features such as the analemma.
Finally, I demonstrated that the formulae reduce to known results in special
cases corresponding to common types of dial.

It is unlikely that the general results presented here will be used to con-
struct a sundial; construction and usage of sundials is simplest for the special
cases considered in Section 7.1. Rather, they may be of more academic inter-
est to sundial enthusiasts. In addition, I hope that this calculation provides
a concrete example of the utility of geometric algebra and shows how it can
bring power and simplicity to calculations in physics.

9 Personal note

Toward the end of a visit to see my family in Canada in the summer of 2005,
I was sitting with my 93 year-old grandfather in his garden before leaving
for the airport at 5pm. I didn’t want to be late but had left my watch inside
– I was about to get it to check the time when my grandfather told me not
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to worry; he had observed that the shadow cast by a fence post was parallel
to the sides of the paving slabs of his patio at 5pm the previous day. As the
shadow was falling about 15◦ from that line, he said that at a rate of about
1◦ every 4 minutes, I had about an hour left.

Inspired by this, I decided to calculate the angle between the paving slabs
and fence shadow during my flight (ie the sundial problem), for some fun on
the plane. On returning home, I checked my formulae against the standard
results in the literature and was surprised to find that I had approached
the problem in what seemed to be a different way, and obtained some more
general results. For this initial inspiration, I am grateful to my grandfather,
Claude Goyder.
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A Spinor approach to the Kepler problem

In Section 5 we introduced (40) for the azimuthal coordinate of the Earth on
its elliptical orbit. This expression is derived from the approach to the Kepler
problem given in [Doran and Lasenby 2003]. The orbit is parametrized in
terms of the spinor U , where

x = Ue1U
† (62)

and where x is the position vector of the Earth’s centre of mass relative
to that of the orbit’s focus. U possesses only even grade elements which,
in 3-d, means that it is a scalar plus bivector. The bivector encodes the
plane of the orbit. U should therefore remind us of a complex number and
the above form is reminiscent of the exponential form of a complex number
(x = reiθ) which rotates the number 1 in the complex plane by θ and dilates
by r. However, it is only when the complex number is split into two and the
double-sided rotation law in (62) is used that we get a form that generalizes
to n dimensions.

Differentiating with respect to time and using the parameter τ where

dt

dτ
= r (63)

and
r = UU † (64)

gives an equation of motion for U

d2U

dτ 2
=

(
− kx

µr2
+
ẋ2

2

)
U = −ω2U (65)

where

ω2 = − E

2µ
(66)

and

E = 1
2
µẋ2 − k

r
. (67)

We have assumed that we are moving in a Newtonian force field where

µẍ = −kx
r3
. (68)
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Equation (65) is just the SHM equation for U with solution

U(τ) = A exp(L̂ωτ) +B exp(−L̂ωτ) (69)

where L̂ is the unit bivector encoding the plane of the orbit, in this case
e1∧e2. Substituting this form of U into (62) gives

x =
[
(A2 +B2) cos 2ωτ + 2AB

]
e1 + (A2 −B2) sin 2ωτ e2 (70)

from which we can derive expressions for the radial and azimuthal coordinates
of the orbit

r(τ) = A2 +B2 + 2AB cos 2ωτ (71)

tanϕ(τ) =
(A2 −B2) sin 2ωτ

(A2 +B2) cos 2ωτ + 2AB
.

Integrating (63) then yields

t(τ) = (A2 +B2)τ +
AB

ω
sin 2ωτ (72)

This equation in transcendental in τ so we cannot obtain a closed form so-
lution for x(t) but we have reduced a problem commonly thought to be one
of numerical integration to one of root-finding instead.

The constants A and B are related to the semi-major and minor axes of
the ellipse (a and b) as follows

a = A2 +B2 (73)

b = A2 −B2

and to the eccentricity e and semi-latus rectum l via

e =
−2AB

A2 +B2
(74)

l =
(A2 −B2)2

A2 +B2
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